- Семидневная Панорама
Новости науки: искусственный интеллект может предсказать преступления с точностью 90%
Американские учены создали алгоритм, который с точностью 90% способен предсказать, где через 7 дней случится кража или нападение. Технология действует в радиусе 300 метров – на данный момент это самая технологичная из разработок такого формата, сообщает Naked Science.
Достижения в области машинного обучения и искусственного интеллекта вызвали немалый интерес у правительств разных стран. И их интерес понятен: если бы существовал рабочий инструмент для прогнозирования преступлений, это сильно упростило бы работу правоохранительных органов и в перспективе кардинально снизило уровень уличной преступности. Об одной из подобных моделей, дающей недельные предсказания о террористических атаках на основе данных только из открытых источников рассказывалось в прошлом году.
Однако большинство предыдущих попыток прогнозирования преступности были довольно противоречивыми и неточными. В основном потому, что зачастую использовали так называемый эпидемический или сейсмический подход, когда преступность возникает в неких «горячих точках», которые затем распространяются на близлежащие районы. При этом упускаются из виду сложная социальная среда городов и их естественная топология, не учитывается взаимосвязь между преступностью и последствиями полицейского принуждения.
Аналитики данных и социологи из Чикагского университета (США) разработали новый алгоритм, который прогнозирует преступность, изучая закономерности во времени и географическом распределении насильственных преступлений (убийства, нападения, нанесение побоев и так далее) и преступлений против собственности (кражи со взломом, обычные уличные кражи и угоны автомобилей и прочее), используя лишь общедоступные данные. Модель может строить прогнозы будущих преступлений на неделю вперед с точностью около 90%.
Новая модель делит город на одинаковые квадраты со стороной примерно 300 метров, анализирует время и место отдельных преступлений и выявляет закономерности для прогнозирования будущих событий. Изначально модель тестировали на данных о нападениях и кражах в третьем по населению городе Соединенных Штатов Америки — Чикаго. Однако модель так же хорошо работала с данными из семи других американских городов: Атланты, Остина, Детройта, Лос-Анджелеса, Филадельфии, Портленда и Сан-Франциско.
«Мы создали цифрового двойника городской среды. Если вы предоставите ему данные о том, что произошло в прошлом, он расскажет вам, что произойдет в будущем. Вы можете использовать алгоритм как инструмент моделирования, чтобы увидеть, что произойдет, если преступность возрастет в одном районе города или усилится правоприменение в другом районе. Если вы используете все эти переменные, сможете увидеть, как системы развиваются в ответ», — объяснил соавтор разработки Ишану Чаттопадхьяй.
При этом ученые не рекомендуют использовать алгоритм напрямую — усиливать патрулирование в местах будущих преступлений. Из-за этого изменятся условия моделирования, и предсказания станут не такими точными.